UNCLASSIFIED

227378

DEFENSE DOCUMENTATION CENTER

FOR
SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

-

UNCLASSIFIED



NOTICE: When government or other dravings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. 8.
Government theredby incurs no responsibility, nor any
obligation vhatsocever; and the fact that the Govemrn-
ment may bhave formulated, furnished, or in any wvay
supplied the said drawings, specifications, or other
data is not to be regarded dy implication or other-
vise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any wvay de related
thereto.

e




Ly g

(o &)
e
(] D1-82-0319
e
[\ ]
b))
S | BOEINGzsss
Q LAB TORIES
5 .
2= O
o -
S [
2=
S L A "String Algorithm” for Shortest Paths
in Directed Networks
: = Yo
0
, i
< Y > Victor Klee

Mathematics Research

November 1963




A "STRING ALGORITHM" FOR SHORTEST PATHS

IN DIRECTED NETWORKS

by

Victor Klee
University of Washington

Mathematical Note No, 333
Mathematics Research Laboratory
BOEING SCIENTIFIC RESEARCH LABORATORIES

November 1963

D1-82-0319

Iy




The literature contains several algorithms for finding the shortest
path between two nodes P and Q of a network, where the distances or
arc-lengths are assumed to be positive, (For references, consult the review
article by Pollack and Weibenson [3] and the book by Ford and Fulkerson [1],)
Some of the algorithms, and in particular some of the analogue devices, afé
applicable only when the distance matrix is symmetric, As was remarked
in [1] and [3], this is true of the simplest of the analogue procedures
----- the "string algorithm'" reported by Minty [2], It consists of making
an inelastic string model of the network, with knots correspording to nodes
and string-lengths proportional to the cdrresponding distances, and then
stretching the knots P and Q as far apart as is possible without breaking
the string; this produces at least ore straight path from P to Q, and

each such straight path corresponds to a shortest path in the network,

Networks with asymmetric distance matrices are most conveniently
represented by means of directed netwerks, in which every arc is regarded
as a one-way street of the approrriate length, In the present note we
describe a simple cutting procedure (related to one suggested by Thomas
Seidman) which can be combined with any algorithm for undirected networks
(symmetric distance matrix) so as to form a shortest-path algorithm for
directed networks (asymmetric distance matrix), In particular, the cutting
and stretching can be alternated to form a "string algorithm" for directed

networks,
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For each directed network N, let Eu denote the corresponding

undirected netwcrk,




THECREM Suppose that P and Q are nodes of a finite directed

network yl which has v nodes and e arcs, and that there is a path

from P to Q in N.. Suppose that A is an algorithm for finding

shortest paths in undirected networks, and let the sequential procedure

§]9 gls §23 9.2’ e EE follows:

S.) Apply A to the undirected network y: to find a shortest

. u q q
path L from P to Q in yi' Suppose m; is given by

1

ii i i i i i
Voal \'s as V2 000 Vh(i)-la'h(i) vh(i)’
where the arcs a; and the nodes V; are listed as they appear in

i i
o & Q= V-

traversing n from P =V

Q.i) If m, is also a path in N,, terminate the procedure. If ny
is not a path in N, there exists a smallect index r(i) and a largest

index s(i) (possibly the same) such that the directionsof a;(i) and

a.1 . in n. are opposite to their directions in N,, Let N, be
s(i) i = -— — ~i _— ~i+

=L 1 =

the directed network that is obtained from N

by deleting every arc of

A L s
. i 7 i . i
N, that (like ar(i)) ends in N, at Vi(i)-1 but is not ®r(i)=1" and
q q i . i
deleting every arc of Ei that (like as(i)) starts in __lji at Vs(i)
. i ] .
but is not @ (i)41- CThere is a path )il from P to Q in N, , such

that I is actually a shortest path from P to Q in N
i

The procedure terminates at some stage gt for which

t < min (v,(e+2)/2),

and the path m is a shortest path from P to Q 1in the directed

network N..
—_ A




(The same conclusion holas if 91 requires only the first of the

two deletions specified above, or if it requires only the second.)

Proof, Of course the algorithm itself does not involve the actual

construction of I, but we require the existence of I (when G; does
i i

not specify termination) to show that the sequential procedure §1, 91'

§2, C,s ... can actually be followed and that each of the paths §, g, vee

is a shortest path from P to Q in El' Since El is finite, the

procedure must terminate at some stage gt and then m is a shortest
path from P to Q in N.

Suppose 91 does not specify termination and let L  be a shortest
i-1

path from P to Q in Ei’ giver by
i i i i .1 i i i
Wo By Wy B Wy eee Wiy PRes) WT(a)e

0
the following three possibilities:

where of course W~ = P and w%(i) = Q, In constructing ;, we consider
i

. i . . i i .
(i) no wj is equal to either Vr(i)-l or Vs(i)’

(ii) there exists j such that w§ = v

r(1)-1 and j<k= wl’; y'A Vi(i);

naq q . . i i
(iii) there exist j and k such that j <k, wj = Vr(i)-l and
i i
e = Vs(ay-

When (i) holds, we define X = ¥ , When (ii) holds, we obtain I by
i i-1 i

. i . i

following LY from P to vm(i)-l and then following igl from Vm(i)-l

to Q. When (iii) holds, we obtain ? by following n from P to

R i i q
next following £ from Vm(i)—l te vn(i)’ and then following

vm(i)—l’ i-1




n from V:(i) to Qr In each case, it is easily verified that E has
the stated properties.‘ Thus the existence of t is established and it

remains only to show that t < min (v,(e+2)/2).

Let us review the‘special properties of certain nodes and arcs of
|

Ni relative to gi itself and relative to gj for j > 1.

i i
(a) vr(i)-l £ Q. If Vr(i)-l = P, then at least one arc of N,

i 5
ends at V. iy, but noarc of N, ends there. If V ..y , £ P,

ther at least two arcs of Ei end at Vi( ) but at most one

i)-1
arc of yj endsthere,

(b) a;(i) ends at P ~or is coterminal with another arc of N i

a;(i) does not end at Q and does not appear in gj‘

(¢) “;(i)—l does not end at P or Q, and is nonexistent if

i
r(i)-1

is coterminal with another arc of gi but not with another arc

i i
ar(i) ends at P, If ar(i) does not end at P, then «

of ..
H.'J

i 2 -1
@ Voy-10 Vr()-1r co0r Vr(ee1)-1

are pairwise distinct, and corsequently t > v, From (b) and (c) it follows

i 1 2 2 t-1 t-1 =
Cr(1)-17 %p(1)? Cr(2)-1° %r(2) ¢ Cp(t-1)-1° Fp(t-1)

S Qv i i
pairwise distinct, If %p(1) ends at P, then ar(i)-l does not appear,

We see from (a) that the t nodes

that the arcs

but this happens for at most ore value of i, and since at least one arc of

yl ends at Q we conclude that e > 2t - 2

The above reasoning completes the proof when 91 is as originally
described, and also when gi is replaced by g& which requires only the

first of the specified deletions, Similar reasoning applied to g;, which




Figure 1
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v nodes, 2(v-1) arcs, all of the same length,

t =v = (e+2)/2
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(ny follows upper arcs except at a  :y)
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v nodes, 3v - 5 arcs, with lengths as indicated,

“i(i)(= ai(i)) indicated by (i)

t=v
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